- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Chowell, Gerardo (1)
-
Karami, Hamed (1)
-
Mujica, Oscar J (1)
-
Smirnova, Alexandra (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Environmental transmission is a critical driver of cholera dynamics and a key factor influencing model-based inference and forecasting. This study focuses on stable parameter estimation and forecasting of cholera outbreaks using a compartmental SIRB model informed by three formulations of the environmental transmission rate: (1) a pre-parameterized periodic function, (2) a temperature-driven function, and (3) a flexible, data-driven time-dependent function. We apply these methods to the 1991–1997 cholera epidemic in Peru, estimating key parameters; these include the case reporting rate and human-to-human transmission rate. We assess practical identifiability via parametric bootstrapping and compare the performance of each transmission formulation in fitting epidemic data and forecasting short-term incidence. Our results demonstrate that while the data-driven approach achieves superior in-sample fit, the temperature-dependent model offers better forecasting performance due to its ability to incorporate seasonal trends. The study highlights trade-offs between model flexibility and parameter identifiability and provides a framework for evaluating cholera transmission models under data limitations. These insights can inform public health strategies for outbreak preparedness and response.more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
