skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mujica, Oscar J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Environmental transmission is a critical driver of cholera dynamics and a key factor influencing model-based inference and forecasting. This study focuses on stable parameter estimation and forecasting of cholera outbreaks using a compartmental SIRB model informed by three formulations of the environmental transmission rate: (1) a pre-parameterized periodic function, (2) a temperature-driven function, and (3) a flexible, data-driven time-dependent function. We apply these methods to the 1991–1997 cholera epidemic in Peru, estimating key parameters; these include the case reporting rate and human-to-human transmission rate. We assess practical identifiability via parametric bootstrapping and compare the performance of each transmission formulation in fitting epidemic data and forecasting short-term incidence. Our results demonstrate that while the data-driven approach achieves superior in-sample fit, the temperature-dependent model offers better forecasting performance due to its ability to incorporate seasonal trends. The study highlights trade-offs between model flexibility and parameter identifiability and provides a framework for evaluating cholera transmission models under data limitations. These insights can inform public health strategies for outbreak preparedness and response. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026